翻訳と辞書
Words near each other
・ Theory of natural limits
・ Theory of obligationes
・ Theory of operation
・ Theory of painting
・ Theory of Pashtun descent from Israelites
・ Theory of Phoenician discovery of the Americas
・ Theory of planned behavior
・ Theory of Probability and Its Applications
・ Theory of pure equality
・ Theory of reasoned action
・ Theory of relativity
・ Theory of religious economy
・ Theory of Scheduling
・ Theory of solar cells
・ Theory of sonics
Theorems and definitions in linear algebra
・ Theoren Fleury
・ Theoretical Advanced Study Institute
・ Theoretical and Applied Climatology
・ Theoretical and Applied Genetics
・ Theoretical and experimental justification for the Schrödinger equation
・ Theoretical and Mathematical Physics
・ Theoretical astronomy
・ Theoretical chemistry
・ Theoretical Chemistry Accounts
・ Theoretical Computer Science
・ Theoretical computer science
・ Theoretical Computer Science (journal)
・ Theoretical Criminology
・ Theoretical definition


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Theorems and definitions in linear algebra : ウィキペディア英語版
Theorems and definitions in linear algebra

This article collects the main theorems and definitions in linear algebra.
==Vector Spaces==
Let be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every \vec u, \vec v, and \vec w in and every scalar and , then is called a vector space:
''Addition'':
# \vec u + \vec v\textV\text
# \vec u + \vec v = \vec v + \vec u
# \vec u + (\vec v + \vec w) = (\vec u + \vec v) + \vec w
# V\text\mathbf\text\mathbf\text\vec 0\text\vec u\textV\text\vec u + \vec 0 = \vec u
# \text\vec u\textV\textV\text-\vec u\text\vec u + (-\vec u) = \vec 0\text
''Scalar Multiplication'':
# c\vec u\textV\text
# c(\vec u + \vec v) = c\vec u + c\vec v
# (c + d)\vec u = c\vec u + d\vec u
# c(d\vec u) = (cd)\vec u
# 1(\vec u) = \vec u

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Theorems and definitions in linear algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.